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J. F’hys.: Condens. Matter 6 (1994) 255S2572. printed in the UK 

Effects of compositional impurities and width variation on 
the conductance of a quantum wire 

T N Todorov and G A D Briggs 
Department of Maierials. University of Oxford, Paks Road, Oxford OX1 3PH. UK 

Received 19 November 1993 

Abstract. An exact single-particle scattering theory formulation of the problem of elastic 
elechonic transport is employed in a Is tight-binding implementation to study the zero-voltage, 
zero-temperature conductance of a two-dimensional quanlum wire as a function of the Fermi 
energy. For a perfect wire, the conductance quantization effed is reproduced. Then. the effects 
on the conductance of compositional impurities and width variation in the wire are studied, 
It is found that the quantization effeet is seriously damaged even with minimal amounts of 
impurity, whereas it exhibits some tolerance towards width variation, especially at low carrier 
mncenhations. It is found that with both types of disorder the conductance is particularly 
strongly suppressed at Fermi energies close to the edges of the subbands for the perfect wire. 
which. in agreement with previous findings, shows thal at those energies the localization of the 
electrons by the disorder is enhanced 

1. Introduction 

Recent advances in semiconductor technology have made it possible to manufacture a variety 
of pseudo two- and one-dimensional structures. A particular kind, often referred to as 
quantum wires, are long and narrow strips of conducting material. The problem of electronic 
transport in quantum wires in the elastic (phonon-k)  regime has attracted intense attention 
due to the presence of an interesting quantum effect, namely the quantization of the zero- 
voltage, zero-temperature DC conductance of the perfect wire, as a function either of the 
wire width or of the position of the Fermi energy (or, equivalently, of the electron density). 

This effect, which has a well understood origin [l. 2, 3, 4, 5 ,  6, 7, 81 and of which 
there have recently been clear experimental observations in nearly perfect long and narrow 
quantum wires 191, is due to the quantization of the transverse momentum quantum number 
in the wire. With each value of the quantized transverse momentum is associated a 
subband of current-carrying electronic states, each suhband contributes one quantum unit 
of conductance, e2/nh, and the conductance is simply given by Ne2/nh, where N is the 
number of subbands available at the Fermi energy. 

However, a perfect quantum wire is difficult to make and therefore it is essential 
(and also interesting) to assess the effects of defects, such as compositional impurity or 
geometric imperfections, on the transport characteristics of the wire. The zero-voltage, 
zero-temperature conductance of a wire containing a single scatterer [ 101 and of a wire with 
a single smooth widening in the shape of a ‘swelling’ 11 11 have recently been investigated 
and in both cases it is found that the quantization of the conductance is damaged or fully 
destroyed. Recently, there have also been two studies [12, 131, in a 1s tight-binding model, 
of the effects of random impurity contamination and width variation on the density of states 
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and on the localization length of the electronic states in a wire of thickness of up to several 
atomic layers. It is found that the density of states is altered relative to what it is in the 
perfect wire, which suggests that the quantization of the conductance would be damaged 
or lost, and that the disorder in the wire leads to finite localization lengths, which suggests 
that the conductance would be suppressed relative to the perfect case. 

The present paper contains a study of the effects of impurity contamination and of 
width variation directly on the zero-voltage, zero-temperature, elastic DC conductance of a 
quantum wire. The calculation employs an orthonormal 1s tight-binding model [IZ, 13, 141 
and is based on an exact single-particle scattering theory formulation of the problem of 
elastic quantum transport, developed and discussed elsewhere [15]. 

T N Todorov and G A D Briggs 

2. Calculation of the conductance 

The general geomefq, the conductance of which is to be calculated, is presented in figure 
1. The quantum wire connects two semi-infinite perfect two-dimensional crystals. The wire 
and the crystals all have the same simple square lattice structure of lattice parameter a. The 
wire can be viewed as an array in the x-direction of one-dimensional atomic layers, each 
of which lies in the y-direction. The number N of such layers specifies the length of the 
wire. The width W of the wire, on the other hand, is defined as the number of atoms ih 
a given layer. W may vary along the length of the wire. The electronic structure of the 
system is approximated by an orthonormal nearest-neighbour 1s tight-binding model with a 
nearest-neighbour hopping integral y and an on-site energy on the native atoms of zero. 

The calculation of the conductance requires some preliminary work, which will be 
described next. 

Y 

mpral 1 sryy'tal 2 

Figure 1. The quantum wire geometry. The quantum wire wnnects the two semi-infinite 
crysmls 1 and 2. The entire sptem has a two-dimensional simple square lattice geometry with 
a M i c e  mnstant a. The lenglh of the wire N is dehned as the number of atomic layers of lhe 
wire. The width of the wire W is defined as the number of atoms in a given wire layer. The 
nearest-neighbour hopping integrals are all equal to y and are indicated by the lines joining the 
atom. This geometry will be used as the 'final situation' in the calculation of the conductance. 

2.1. The surface Greenfunction for the bare semi-infinite simple square lattice 

Consider only the semi-infinite simple square crystal 1 from figure 1 (i.e., imagine that 
the wire and crystal 2 are not there). We will require the matrix elements of its retarded 
Green function between surface atomic sites. The general method, used in this work for 
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calculating such matrix elements, has been described in detail in [15] and therefore here it 
will be sketched only briefly, for completeness. 

The semi-infinite simple square lattice can be regarded as an array in the x-direction of 
infinite onedimensional atomic chains, lying in the ydirection. Let us number them from 
1 to 00 with chain 1 being the surface chain. Each atomic chain in isolation has a set of 
eigenstates ( I K ) }  given by 

where NI is the number of atoms in the chain with NI -+ 00, In) is the 1s state on the nth 
chain atom and K = ka with k being the wave-vector along the chain. The chain states 
{ I K ) )  have energies { & ( K ) ] ,  in units of IyI, given by 

& ( K )  = -2cos(K) (2) 
where K E [-z,a]. Let now (11, K ) ]  be the chain states for the Ith chain in the semi- 
infinite simple square lattice. If H is the Hamiltonian for the lattice, we have that the 
matrix element (1, KIHlm, K') is not identically equal to zero only if K = K'. For the 
case K = K', we denote the above matrix element by Hf,(K) and note that if 1 = m, then 
HI,(K) = Iyl&(K); if 1 = m f 1, then H f m ( K )  = y and finally, if 1 # m and 1 # m f 1. 
then Hf,,,(K) = 0. 

Since H is diagonal in the label K ,  so will be @(E) ,  where @+(E)  is the 
retarded Green function for the lattice. Let us write @ , ( E ,  K) for the matrix element 
( I ,  KIGo+(E)lm, K). Consider now appending another chain to the end of the semi- 
infinite lattice. Let this chain have index 0. Let its bonding to the rest of the lattice 
be realized by a term V in the Hamiltonian, so that the only non-zero matrix elements of 
V, in the basis of the chain states (11, K)), are Vo,(K) = V,o(K) = y .  We also have 
G$(E, K) = 1/(E - Iyl&(K) +is). where c + O+, and G g ( E ,  K) = @ ( E ,  K) = 0 
for all n # 0. Let G + ( E )  be the retarded Green function for the lattice with the new chain 
bonded to it. Solving the Dyson equation 

(3) G + ( E )  = @+(E) + G ~ + ( E ) v G + ( E )  
we easily obtain 

1 E - & ( K )  + J[& - &(K)]Z - 4 G&(E. K )  = - IY I 2 (4) 

where & = E/I y I and we choose the solution with the minus sign if the expression under 
the square root is negative, while if this expression is positive, we choose the solution with 
the minus sign if [E - &(K)] t 0 and the solution with the plus sign if [ E  - &(K)I < 0. 
(The rules for choosing between the two solutions are discussed in [15].) 

Consider now two atomic sites, p and q. on the surface of the semi-infinite lattice. Let 
them be n lattice parameters apart. Consider the matrix element of @ ( E )  between them. 
Call this matrix element Gf(E, n). We have 

@(E,  n) = (plG+(E)Iq) = (PIL K ) G L ( E .  K)(m. Klq) 
f , m , K  

Finally, replacing (1/N1) CK by (1/2a) JTr d K  we obtain 
1 *I 
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where in replacing exp (inK) by cos (nK) we have made use of the fact that G&(E, K) is 
an even function of K. The desired Green function matrix elements between surface sites of 
the semi-infinite simple square lattice can be obtained from equation (6), after substituting 
for G&(E, K )  from equation (4). The integration in (6) is performed numerically. 

2.2. Growth of the quantum wire 

The next stage in the calculation of the conductance of the geometry from figure 1 consists 
in growing the wire [ 161, layer by layer, on crystal 1. In the first step of the growth sequence 
(figure 2(a)), the first atomic layer of the wire is bonded to the surface of crystal 1, in the 
second growth step, the second layer of the wire is bonded to the first layer, and so on. 

T N Todorov and G A D Briggs 

ErysIal1 Sryn.lz 

Figure 2. (a) The geomeny &er the firsf step in the growth of the wirc. (b) 'lie geometry at 
h e  end of the growth sequence. Notice ulat [here still is no bonding buween layers (N - 1) 
and N of the wire. This genmetry will be used as the 'initial situation' in the calculation of lhe 
mnductance. 

At every step of the growth sequence, the retarded Green function matrix elements 
between atomic sites in the last added layer are calculated by writing the Dyson equation, 

(7) 
and solving it numerically. For a typical growth step, say growth step k with k > 1, the 
quantitites Gw(E), V and G+(E)  are constructed as follows. 

G N ( E )  is the Green function for the situation just before the growth step. In this 
situation the wire has been grown up to and including layer (k - 1). whereas the atoms in 
layer k are not bonded to each other or to the atoms in layer (k - 1). The ma& elements 
of GN(E)  between atoms within layer (k - 1) are available from the previous growth step, 
those between an atom in layer (k - 1) and an atom in layer k or between two different 
atoms within layer k are all zero, while the on-site matrix element of Got(E) on an atom 
in layer k is given by 1 / ( E  - Ea + ic), where E. is the on-site energy on the atom and 
E -+ o+. 

(3)7 as 
[l - Go+(E)V]G+(E) = Gw(E) 
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The term V describes the bonding of the atoms in layer k to each other and to the atoms 
in layer (k - 1). Thus, the matrix element of V between two atom in layer k or between 
an atom in layer k and an atom in layer (k - 1) is equal to y if the atoms are nearest 
neighbours and is zero otherwise. All other matrix elements of V are zero. 

@ ( E )  is the Green function for the situation just after the kth growth step, when the 
wire is grown up to and including layer k. 

In the case of the first growth step, G‘+(E), V and @ ( E )  are constructed in the same 
way, except that in the situation before the growth step (i.e., the situation described by 
Got(,?)), no part of the wire has been gown yet and we have the bare crystal 1 plus the 
decoupled atoms of the first wire layer. 

The growth sequence is continued up to and including layer (N - 1) of the wire. The 
Nth layer of the wire is then bonded to the surface of crystal 2. This situation (figure 2@)), 
in which there still is no bonding (hopping integrals) between layers (N - 1) and N of the 
wire. will be used in the calculation of the conductance. 

2.3. The conductance 

The geometry from figure 2@), which below will be referred to as the ‘initial situation’, 
consists of two decoupled semi-infinite systems: one of them, system 1, is crystal 1 with the 
wire up to and including layer (N - 1) grown on it, and the other one, system 2, is crystal 2 
with layer N of the wire bonded to it. Let Gw(E) now be the retarded Green function for 
the initial situation. The matrix elements of Go+(E) between atoms within layer (N- 1) and 
those between atoms within layer N are available from the growth sequence, while those 
between an atom in layer (N - 1) and an atom in layer N are all zero. Let us introduce 
CY@) and CY@) as the projections of Cot@) on to systems 1 and 2 respectively. Thus, 
if p and q are two atomic sites, we have that the mahix element (plGy+(E)1q) is equal to 
(plG‘+(E)lq) if both p and q are in system 1, and is zero otherwise, and analogously for 
the makix elements of G Y ( E ) .  Let p y ( E )  and &E) be the density of states operators for 
systems 1 and 2 respectively, given by 

o+ 1 
2 ~ i  &E) = - [G;-(E) - Gi ( E ) ]  j = 1 ,2  

where G;-(E) = [GF(E) ] t .  
In the geometry from figure I ,  which below will be referred to as the ‘final situation’, 

system 1 and 2 are fully bonded to form a single infinite system. Let C+(E)  be the retarded 
Green function for the final situation. 

The transition from the initial to the final situation is realised by the addition to the 
initial Hamiltonian of a term V ,  containing the hopping integrals between systems 1 and 
2. Thus, the only non-zero matrix elements of V are of the form V I Z  = V21 = y ,  where 
indices 1 and 2 designate an atom in layer (N - 1) and its nearest neighbour in layer N of 
the wire, respectively. 

As is proved in [15], the zero-voltage. zero-temperature elastic conductance g of the 
geometry in the final situation is given by 

where EF is the absolute position of the Fermi energy and the operator t ( E )  is given by 

? ( E )  = V + V G + ( E ) V .  (10) 
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Using the Dyson equation for @ ( E ) .  (3). one can write equation (IO) as 

T N Todorov and G A D Briggs 

[ l -  VGO+(E)lt(E) = v. (11) 
The conductance g is found by taking the trace in equation (9) in the orthonormal 

atomic basis after solving equation (11) numerically to find the respective matrix elements 
O f  f(EF). 

3. Results and discussion 

The dispersion relation for the Is band for the two-dimensional simple square lattice with 
zero on-site energies is 

E =  -2c0s(Kx)-2c0s(K,) (12) 
where E is the band energy in units of IyI and KX., = k,,,a with k = ( k x ,  k,) being the 
wave-vector in the plane of the lattice. The first Brillouin zone is given by IKX,,l E [0, n]. 
Thus, the Is band energy E lies in the interval [-4.41. The band is half-filled for EF = 0, 
where EF = E ~ / l y l .  

In the present work, the conductance g for a given wire is calculated as a function of 
EF for values of EF lying in the interval [-4,4] and spaced by 0.01. 

3.1. The perfect wire 

First we consider the case of a perfect wire, defined as a wire of uniform width W and 
straight edges (i.e., not a meandering wire of constant width), and with on-site energies 
equal to zero as in the two semi-infinite crystals 1 and 2 (figure 3). Figure 4 contains plots 
of g (in units of e2/xh)  versus EF for a wire of length N = 10 and width W = IO (lower 
curve) and for a wire of length N = 100 and width W = 10 (upper curve). The two curves 
are offset by unity in the vertical direction. The gross structure of the curves consists of 
sharp unit conductance steps (in units of e2/xE). The fine structure of the curves consists 
of ripples, superimposed on the sharp steps. 

I w  
Srysl'll q"anl"m *,E cIyst.12 I I 
Figure 3. The geometry with a perfect wire of length N and widlh W .  

In a 1s tight-binding model, a perfect two-dimensional wire with a simple square lattice 
geometry and of width W atoms has W subbands, defined by Ky = K,(n) = n x / ( W  + 1). 
n = 1,2, ..., W. The bottom of the nth subband corresponds to K ,  = 0, Ky = Ky(n) 
and therefore, from the dispersion relation (12). lies at an energy, in units of Iy I ,  of 
-2 - 2c0s[Ky(n)]. The top of the nth subband corresponds to Kr = n, K, = Ky(n) 
and lies at an energy, in units of Iy I .  of +2 - 2cos[Ky(n)]. As may easily be verified, 
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&F 

Figure 4. Plots of the conductance 8 in units ofe’fnh versus the Femi energy in units of Iy1. 
&F, for a perfect wire of length N = IO and width W = IO (lower curve) and for a perfect wire 
of length N = 100 and width W = 10 (upper curve). The two curvcs are offset by unity in the 
vertical direction 

the bottoms of the ten subbands for the case W = 10 coincide with the values of &F at 
which in figure 4 we see jumplike increases in the conductance, while the tops of the ten 
subbands coincide. with the values of 4 at which in figure 4 we see jump-like decreases 
in the conductance. Therefore, the gross structure of the g versus &F curves corresponds to 
the opening and closing of conduction channels, which correspond to the various subbands 
for the perfect wire. Each conduction channel contributes one quantum unit of conductance 
(e2 /r f i )  and the conductance of the perfect wire is thus quantized. 

The fine structure of the curves, namely the ripples, also known as ‘ringing’ [16], is due 
to the multiple reflections at the interfaces between the wire and the semi-infinite crystals. 
For certain values of &F~ K, in one or more of the available subbands is such that the 
Fermi electrons in these subbands can form quasi-standing waves in the wire region. These 
electrons thus become partially trapped in the wire and the conductance undergoes a slight 
depression. The amount of ringing is reduced by reducing the ratio of the length of the 
wire to its width, which can be seen by comparing the two curves in figure 4. 

The symmetry about the point &F of the two curves is due to the combination between 
the symmetry about the same point of the 1s bands for crystals 1 and 2, and the fact that 
the on-site energies in the wire itself are all equal to zero. 

The results for the perfect wire will be used now as the basis for investigating the effects 
of compositional impurity and width variation on the conductance of the wire. 

3.2. Compositional impurily 

In the study of the effects of impurity contamination on the conductance, we once again 
consider wires of uniform width and straight edges. All nearest-neighbour hopping integrals 
are equal to y as before, but now the on-site energy on randomly selected wire atoms is 
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made different from the native on-site energy of zero. Thus, a particular impure wire is 
defined by its length N, its uniform width W, the percentage p and the on-site energy €imp 
(in units of Iyl)  of the impurity atoms. 

Figure 5 contains a plot of g (m units of e2/lrfr) versus &F for the wire of length N = 100 
and width W = 10 with impurity contamination with p = 3% and €imp = -1 (lower curve). 
The curve for the same wire without the impurities is also shown for comparison (upper 
curve). The two curves are offset by unity in the vertical direction. Even though with 
p = 3% there would only be about 30 impurity atoms in this wire of IO00 atoms, the shape 
of the conductance curve has been damaged strongly. There is only a faint trace of the 
conductance steps, the curve is highly irregular and the conductance is suppressed relative 
to the case of the perfect wire. The loss of the conductance quantization effect and the 
overall irregularity of the curve are due to the destruction of the periodicity of the wire 
(and hence of the subband structure, present in the perfect wire). The suppression of the 
conductance, on the other hand, is due to the back-scattering introduced by the impurity 
atoms. Observe also that the symmetry of the conductance curve about the point Ep = 0 
has been broken. This is due to the presence in the wire of atoms with non-zero on-site 
energies. 

T N Todorov and G A D Briggs 

Er 

Figure 5. A plot of the conductance g in units of e'fnh versus &F for lhe wire of len!glh 
N = 100 and widlh W = 10 with impurity conlaminalion with p = 3% and &imp = -1 (lower 
curve). The curve for the same wire without the impurities is also shown for comparison (upper 
curve). The lwo curves are offset by unity in the vertical direction. 

A prominent feature of the curve for the impure wire is the marked conductance minima 
around the values of EF at which in the case of the perfect wire we see quantized conductance 
jumps, or in other words, in the vicinity of the perfect wire subband edges. A similar 
effect has been found in a study of the conductance of a wire containing a single scatterer 
[lo]. Likewise, in the calculations in [13] minima around the subband edges are found in 
the electron localization length in geometrically perfect but compositionally impure two- 
dimensional wires. 
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Figure 6. A plot of the conductance g in units of e2/nh Venus &F for the wire of length 
W = 100 and width W = 10 with impurity contamination with p = 15% and himp = - I  flower 
curve). The curve for the m e  wire without the impurities is also shown for comparison (upper 
curve). The hvo c w e s  are offset by unity in the vertical direction. 

Increasing the percentage of the impurity atoms to p = 15% (figure 6) leads to a 
complete disappearance of the conductance steps and to a very significant suppression of 
the conductance. Notice also the slight shift of the entire g versus &F curve in the negative 
&F direction, This effect is due to the lowering of the average on-site energy in the wire. 

3.3. Width variation 

Now we turn to the effect on the conductance of variation in the width (also called surface 
roughness) of the quantum wire. We consider a wire of total length N without any impurities. 
The wire has alternating nmow and wide regions of widths, in numbers of atoms, Wt and 
Wz respectively. One edge of the wire is smooth so the variation in the width of the wire 
manifests itself as roughness along the other edge. The length in the x-direction of each 
region, in numbers of wire layers, is ( L ,  - Lv,), L,,, or ( L ,  + L,) with a probability 
of f in each case. L ,  is the correlation length of the roughness and L, is a measure 
of the variation about L ,  of the length of a typical narrow or wide region. The above 
geometry is shown in figure 7. 

Figure 8 contains a plot of the conductance g (in units of e2/?r2) versus &F for a rough 
wire with N = 100, W,  = 10, Wz = 11, L,,, = 10 and L,, = 1 (lowermost curve). The 
curves for the perfect wire with N = 100, W = W, = 10 (middle curve) and for the perfect 
wire with N = 100, W = WZ = 11 (uppermost curve) are also shown for comparison. Each 
pair of neighbouring curves are offset by unity in the vertical direction. Unlike the impurity 
curves, the curve for the rough wire has well marked conductance steps. Moreover, both 
in their number and in their positions, these steps correspond more closely to those found 
in the case of the perfect wire with W = W I  = 10 than to those found in the case of 
the perfect wire with W = Wz = 11. Thus, a rough wire of narrow and wide regions of 
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Figure 7. The geometry for the width variation olculation. The wire has altemating narrow 
and wide regions of widths WI and W2 respectively. T k  length of each region is (La, - Lvm), 
La. or (Lmr t hy) with a prubabiliry of f in each case. 

I '  " ' " '  ' I  n " I "  ' I  

EF 

Figure 8. A plot of the conductance g in units of e2/nh versus &F for a rough wire with 
N = 100, W I  = IO, WZ = 11, L,, = 10 and Lvm = 1 (lowermost cum). The curves for 
the perfect wire with N = 100, W = WE = 10 (middle c w e )  and for the perfect wire with 
N = 100. W = W2 = 11 (uppermost curve) am also shown for comparison. Each pair of 
neighbouring cwes is offset by unity in the venical direction. 

widths W1 and Wz, respectively. 'perceives' itself as a perturbed version of a perfect wire of 
width W1 rather than as a perturbed version of a perfect wire of width W2. For this reason 
in the rest of the discussion the conductance of such a rough wire will be related to and 
compared with the conductance and the underlying subband structure of the corresponding 
perfect wire of width WI. The fmt two or three conductance steps in the rough case are 
more or less square in shape and have the size of the quantum unit, as in the perfect case. 
The higher-order steps have an increasingly more ragged appearance and smaller height. 
This means that, as may be expected, the effect of width variation on the electronic states 
in the wire is weakest for states in the subbands with the lowest values of the tIansverse 
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wave-vector K,,. 
The conductance for the rough wire has pronounced minima around those energies 

at which the conductance for the perfect wire undergoes quantized jumps, indicating that 
exactly as in the case of impurity contamination, the propagation of electronic states with 
energies close to the subband edges is impeded particularly effectively by the disorder. 
Observe also that with all on-site energies being zero, the conductance curve for the rough 
wire is symmehic about the point EF. 

Figure 9. A plot of the conductance g in units of ezf/nh versus &F for a mu& wire with 
N = 100, Wi = IO, Wz = 11, L,, = IO and L, = 3 (lower c w e ) .  The curve for the perfect 
wire with N = 100, W = WI = IO is also shown for comparison (upper curve). The two curves 
are offset by unity in the verlical direction. 

Increasing L,, to three (figure 9) does not alter much the appearance of the conductance 
steps or the size of the conductance, but causes the conductance minima near the subband 
edges to become more prominent. Increasing the amplitude, (WZ - Wl), of the width 
variation in the wire, on the other hand, affects the conductance steps strongly and suppresses 
the conductance, as may be seen from figure 10, which contains the results for the case 

The effect of varying L, is quantitative rather than qualitative. Figure 11 contains the 
conductance curve for the case N = 100, W, = 10, W2 = 11, L,, = 5, L, = 1. As may 
be seen from a comparison with figure 8, the conductance is reduced relative to the case 
L ,  = 10. This is due to the increase, with decreasing L,, in the scattering per unit length 
of the wire. The reduction in L,, leads also to a widening of the conductance minima near 
the subband edges. 

In the past, in continuum (as opposed to tight-binding) studies of the electron mobility 
as a function of the correlation length of smooth width variation in narrow two-dimensional 
regions, at a fixed Fermi energy, chosen such that there is only one available subband, it 
has k e n  found [17, 181 that the mobility goes through a minimum when the correlation 
length of the roughness becomes comparable to the Fermi wavelength. One might expect 

N = 100, Wi = 10, Wz = 12, L,, = 10, L,, = 1. 
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EF 

Figure 10. A plot of tk conductance g in units of ZIzh  v m s  EF for a mu& w k  with 
N = 100, Wt = IO. Wz = 12 Lr = 10 and Lvu = 1 (lower curve). The curve for the perfect 
wire with N = 100, W = W I  = IO is also shown for wmparison (upper curve). The WO curves 
are offset by unity in the vertical direetion. 

Figure 11. A plot of the wnductance g in unie of e'fnh versus 4 for a rough w k  With 
N = 100, i4'! = IO, W2 = 11.  &, = 5 and L ,  = I (lower c w ) .  The c w  for the perfect 
wire with N = 100. W = WI = I O  is also shown for comparison (upper m e ) .  The two curves 
are offset by unity in the vertical direction. 

by analogy that in the present roughness calculations the conductance would have local 
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minima at those values of &F at which in one of the available subbands %/K, becomes 
similar to L,, thereby enabling the Fermi electrons to form quasi-standing waves in the 
narrow and wide regions of the wire. However, even though it should exist in principle, 
in the present set-up this effect cannot be seen, because it has the same mechanism and 
therefore the same sue as the ‘ringing’ phenomenon, and is thus masked by the latter. 

4. Concluding remarks 

The purpose of the present calculations is to provide a visual quantitative picture of the 
effects of compositional impurities and width variation directly on the conductance of a 
quantum wire. 

The calculations on the perfect wires illustrate the manifestation and the mechanism 
of the conductance quantization effect and show an interesting consequence of the chosen 
geometry, namely the fine conductance oscillations, or ringing, that are due to partial electron 
trapping by the formation of quasi-standing waves in the wire and which, by their very 
nature, may be clearly observed only in the phonon-free regime. 

The calculations on wires with compositional impurity or non-uniform width give an 
idea of how good a quantum wire must be for the quantization effect to be at least partially 
preserved. 

Qualitatively, impurity contamination and width variation have the same effect of 
suppressing the conductance and of damaging or destroying the conductance quantization. 
With both types of disorder there is enhanced suppression of the conductance at Fermi 
energies close to the subband edges. This is a direct manifestation of the previously 
established result that the electron localization length has local minima at these energies. 

The essential quantitative result of this study is that destruction of the conductance 
quantization and strong suppression of the conductance are achieved even with minimal 
amounts of impurities in the wire, while with small-amplitude width variation the 
quantization effect survives partially. In fact, while the destructive effect of impurity 
contamination on the conductance quantization is more or less uniform throughout the 
conduction band, in the case of width variation, the conductance steps at low F (which 
correspond to the opening of the subbands with the lowest values of the transverse wave 
vector) suffer relatively slight damage. Therefore, the effects of surface roughness in a real 
wire may be partially overcome by adjusting the Fermi level in the wire, whereas the effects 
of impurity contamination, in addition to being more drastic, would plague one at all carrier 
concentrations. 
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